Hippocampal LTP Is Accompanied by Enhanced F-Actin Content within the Dendritic Spine that Is Essential for Late LTP Maintenance In Vivo

Yugo Fukazawa,1,6 Yoshito Saitoh,1,6 Fumiko Ozawa,1 Yasuhiro Ohta,2 Kensaku Mizuno,1 and Kaoru Inokuchi1,5,*

1 Mitsubishi Kagaku Institute of Life Sciences (MITILS) Machida, Tokyo 194-8511 Japan
2 Division of Cerebral Structure National Institute for Physiological Sciences Okazaki 444-8585 Japan
3 Laboratory of Animal Science Tottori University Tottori 680-8553 Japan
4 Department of Biomolecular Sciences Graduate School of Life Sciences Tohoku University Sendai 980-8578 Japan
5 Graduate School of Environment and Information Sciences Yokohama National University Yokohama 240-8501 Japan

*Correspondence: kaoru@libra.ls.m-kagaku.co.jp
†These authors contributed equally to this work.

Summary

The dendritic spine is an important site of neuronal plasticity and contains extremely high levels of cytoskeletal actin. However, the dynamics of the actin cytoskeleton during synaptic plasticity and its in vivo function remain unclear. Here we used an in vivo dentate gyrus LTP model to show that LTP induction is associated with actin cytoskeletal reorganization characterized by a long-lasting increase in F-actin content within dendritic spines. This increase in F-actin content is dependent on NMDA receptor activation and involves the inactivation of actin depolymerizing factor/cofilin. Inhibition of actin polymerization with latrunculin A impaired late phase of LTP without affecting the initial amplitude and early maintenance of LTP. These observations suggest that mechanisms regulating the spine actin cytoskeleton contribute to the persistence of LTP.

Introduction

Synaptic plasticity, a long-lasting change in synaptic efficacy in response to neural activity, is thought to be involved in a wide variety of brain functions including learning and memory. It appears that the dendritic spine, a specialized structure in the mature brain on which the majority of excitatory glutamatergic synapses is formed, is a critical site for synaptic plasticity (Halpain, 2000; Matus, 2000; van Rossum and Hanisch, 1999). A pronounced characteristic of the dendritic spine is an enrichment of cytoskeletal actin, and indeed the actin filament (F-actin) is the major cytoskeletal element in the dendritic spine (Fifkova and Morales, 1992; Matus et al., 1982). The F-actin is particularly prevalent in the spine head, the postsynaptic density (PSD), and the spine apparatus (Capani et al., 2001). It appears that the cytoskeleton formed by the F-actin in the dendritic spine is more dynamic than was previously thought. For example, the dendritic spines of cultured hippocampal neurons exhibit a rapid actin-based motility that is regulated by glutamate receptor activation (Fischer et al., 1998, 2000). The ability of the dendritic spine to swiftly alter its actin cytoskeleton is also shown by the remarkable fact that over 80% of the spine actin is in a dynamic state with a turnover time of less than a minute (Star et al., 2002). That the F-actin in the dendritic spine contributes to synaptic plasticity is suggested by studies showing that actin assembly plays an essential role in the molecular process underlying hippocampal long-term potentiation (LTP), a typical form of synaptic plasticity. In these studies, actin assembly was pharmacologically inhibited and it was found that this either decreases the LTP magnitude or impairs early LTP maintenance in hippocampal slice preparations (Kim and Lisman, 1999; Krucker et al., 2000).

How the cytoskeletal actin in the dendritic spine could contribute to synaptic plasticity is unclear, but there are several possibilities. First, it probably plays a central role in the morphological changes of the spine that occur in response to a variety of neural activity including electrical stimuli that evoke LTP (Colicos et al., 2001; Engert and Bonhoeffer, 1999; Geinisman et al., 1996; Maletic-Savatic et al., 1999; Toni et al., 1999; Trachtenberg et al., 2002; Wu et al., 2001). These morphological changes, which may reflect the formation of new synapses, include the protrusion of new dendritic filopodia and spine outgrowth. They are input specific and correlate with the induction of LTP. These changes in spine morphology are mainly mediated by the actin cytoskeleton (Colicos et al., 2001). Another way the actin cytoskeleton could contribute to synaptic plasticity is by mediating the exocytosis and endocytosis of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites. These events are important in the maintenance of early LTP (E-LTP) (Carroll et al., 2001; Malinow et al., 2000; Sheng et al., 2001), and endocytotic and exocytotic processes depend in general on the actin cytoskeleton (Cremona and De Camilli, 2001; Qualmann et al., 2000; Schafer, 2002). The actin filament could also serve as a path for local protein trafficking within the dendritic spine (Kaech et al., 2001; Langford and Molyneaux, 1998). Finally, as F-actin acts as an anchor for postsynaptic macromolecular complexes, a change in the actin cytoskeleton would probably alter the functional state of postsynaptic proteins, which in turn could affect synaptic efficacy (Allison et al., 1998; Halpain, 2000; Lisman and Zhabotinsky, 2001; van Rossum and Hanisch, 1999). Hippocampal LTP consists of at least two distinct phases, namely, an early LTP (E-LTP) phase that is inde-
dependent of macromolecule synthesis, and a late LTP (L-LTP) phase that is dependent on protein synthesis (Bailey et al., 1996). E-LTP lasts 2–3 hr in hippocampal slice preparations and several hours in intact animals, while L-LTP persists for several hours in slices and days or even weeks in unanesthetized animals (Abraham et al., 1993; Frey et al., 1993, 1996; Krug et al., 1984; Matsuo et al., 2000; Nguyen et al., 1994; Nguyen and Kandel, 1986). A number of genes that are upregulated following L-LTP induction have been identified (Matsuo et al., 2000; Nedivi et al., 1993; Qian et al., 1993; Yamagata et al., 1993). Interestingly, they include the genes encoding the actin-associated proteins synaptopodin and Arc (Link et al., 1995; Lyford et al., 1995; Yamazaki et al., 2001). This suggests that the spine actin cytoskeleton is not only involved in the rapid and reversible motility that occurs within seconds or minutes, but it may also be involved in morphological changes that occur slowly and are sustained over hours and days to maintain the L-LTP.

In this paper we induced LTP in the dentate gyrus of living animals and examined the effect of this on the actin cytoskeleton in the spine. We observed that F-actin content of spines was increased and found that this is mediated in part by the inactivation of actin depolymerizing factor (ADF)/cofilin, and inhibition of actin polymerization by latrunculin A treatment blocked the late phase pathway.

Figure 1. LTP Is Accompanied by an Increase in Histochemical Reactivity to F-Actin in an Input-Specific Manner

(A) Left: anatomical organization of the entorhinal-dentate gyrus used for quantification.

(B) Duration of MPP-LTP. Population spike (PS) amplitude was monitored at the times indicated after the delivery of HFS. The potentiation of PS amplitudes persisted for at least 1 week when a strong HFS [HFS (2400), HFS (500), or HFS (300)] was delivered. When a weak HFS [HFS (90)] was delivered, the potentiation of PS amplitudes persisted for 1 day but decayed to basal level within 1 week. Typical fEPSP traces evoked before (left) and 45 min after (right) HFS (2400) of the MPP or LPP are also shown (top panel).

(C–F) The HFS indicated was delivered to the MPP (D and E) or LPP (F) fibers to elicit LTP at the MML or OML synapses, respectively. The brain was dissected 45 min after beginning the HFS indicated. The fluorescence intensity of the phalloidin-TRITC signal (0–256 grading) at each pixel was divided by the averaged fluorescence intensity in the reference area and expressed as a normalized fluorescence unit. Data (mean ± SEM) from the LTP and the control (contralateral) sides of the dentate gyrus are shown in red or black, respectively.

*, p < 0.05, compared with control side, t test. n, number of animals used for quantification.
of LTP. These results indicate the crucial role that activity-dependent regulation of spine actin dynamics plays in synaptic plasticity.

Results

F-Actin Content in Synaptic Layers Undergoes a Net Increase after LTP Induction

To study actin cytoskeletal changes during neural activity-dependent synaptic plasticity, we examined LTP in the dentate gyrus of freely moving unanesthetized rats. In the dentate gyrus of the hippocampus, each granule cell receives two distinct inputs from the entorhinal cortex known as the medial and lateral perforant pathways (MPP and LPP, respectively) (Figure 1A; Hjorth, 1972; Hjorth and Jeune, 1972; McNaughton, 1980; McNaughton and Barnes, 1977; Steward, 1976). MPP fibers originate from the medial entorhinal area and terminate in the middle one-third of the molecular layer (MML) of the hippocampus while the LPP fibers originate from the lateral entorhinal area and terminate in the outer one-third of the molecular layer (OML). As noted previously by McNaughton (McNaughton and Barnes, 1977) and confirmed by our own recordings (Figure 1B, top panel), electrical stimulation of these fibers produces a characteristic waveform of evoked field excitatory postsynaptic potential (fEPSP) superimposed by a population spike. The fEPSP traces obtained by stimulating the MPP fibers show shorter latent periods prior to the peak and shorter half-widths compared with the traces following LPP stimulation. Furthermore, high-frequency stimulation (HFS) of the MPP and the LPP fibers specifically results in LTP at the MML (Figure 1B, bottom panel) and OML (not shown) synapses, respectively (also see McNaughton and Barnes, 1977). We used this model of LTP in unanesthetized animals throughout this work except when we examined the effect of drug infusion on LTP persistence, which required the use of urethane-anesthetized animals (Figures 5, 6D, and 6E).

We found that when a strong HFS (HFS (2400), HFS (500), or HFS (300); numbers in parenthesis indicate the total number of stimulation pulses, see Experimental Procedures for details) was delivered to MPP fibers, L-LTP was elicited in MML synapses that lasted more than a week (Figure 1B), which confirms previous observations (Abraham et al., 1993; Matsuo et al., 2000). Histological examination of the dentate gyrus of these rats revealed that the MML had marked increase in reactivity to phalloidin, a specific probe for F-actin [Figures 1C–1E, 45 min after the beginning of HFS; see also Figure 7A for HFS (300)]. In addition, the quantification of the average fluorescence intensities of the molecular and granule cell layers in the upper blade of the phalloidin-stained dentate gyrus revealed that the phalloidin reactivity of the MML had increased significantly (Figure 1G). Similarly, HFS (2400) of the LPP fiber, which elicits L-LTP in the OML synapses (data not shown), significantly enhanced phalloidin reactivity in the OML (Figures 1F and 1G, 45 min after beginning HFS). These results clearly demonstrate that only the synaptic layers that had undergone LTP showed an increase in phalloidin reactivity. The three strong HFSs of MPP fibers [HFS (2400), HFS (500), and HFS (300)] induced equivalent degree of LTP persistence and increases in phalloidin reactivity. Consequently, HFSs of (300) or higher will be used interchangeably as strong HFSs in the following experiments.

We next measured the levels of the soluble monomeric actin (G-actin) and the insoluble filamentous polymerized actin (F-actin) in the MML following the induction of L-LTP via the MPP (Figure 2). MMLs were collected by means of the Laser Capture Microdissection technique (Simone et al., 2000) from dehydrated frozen sections of the brain dissected 3 hr after beginning HFS (2400) of the MPP (Figure 2A). The MML tissues were fractionated by a buffer containing 1% Triton X-100, and the soluble and insoluble materials were subjected to quantitative Western blot analysis (Figure 2B). The total actin levels (G-actin + F-actin) of the MMLs from the control and LTP sides did not differ significantly (Figure 2C, number of animals tested = 3). However, in the LTP side, the ratio (R) of F-actin (insoluble) to G-actin (soluble) was higher compared to that of the control side (Figure 2C, R_F/actin_R_G/actin = 1.31 ± 0.14). Thus, the increase in phalloidin reactivity in the MML observed after LTP induction indeed reflects an increase in the F-actin content in the synaptic layer.

Induction of L-LTP Increases F-Actin Levels in Dendritic Spines

Dendritic spines are extremely enriched in actin molecules (Capani et al., 2001; Fikova, 1985; Matus et al., 1982). Confirming this is that laser confocal microscopy on control MML and inner molecular layer (IML) stained with phalloidin revealed multiple punctate signals that indicates the F-actin in the spine (Figure 3A, left). When the MPP received HFS (2400), the intensity of the punctate signals in the MML were elevated without changing in the IML, which suggests that the F-actin in the dendritic spine increases after LTP induction (Figure 3A, right).

To investigate this phenomenon further, we examined MMLs by electron microscopy using a recently described high-resolution photoconversion method (Capani et al., 2001) to visualize the precise distribution of F-actin. Phalloidin conjugated to the fluorophore eosin was used to label F-actin. The oxygen radicals released by eosin excitation oxidize diaminobenzidine tetrahydrochloride (DAB), which then becomes electron-dense when it is treated with osmium. Figure 3B shows examples of electron micrographs taken of the MML 45 min after HFS (2400) had begun. The large and morphologically diverse dendritic spines (arrows) showed intense phalloidin reactivity throughout their spine cytoplasm and PSD, whereas the small and morphologically simple spines (arrowheads) showed intense phalloidin reactivity mainly at PSD. These observations confirm those of Capani et al. (2001). Electron micrographs of MML of the LTP side without photoconversion show weaker electron density in the PSD (Figure 3B, bottom), indicating that the dark PSD staining after photoconversion is indeed due to the presence of actin in the PSD.

We counted the MML synapses with intensely phalloidin-reactive spines. We defined intensely phalloidin-reactive spines as those whose phalloidin staining throughout their spine cytoplasm is stronger than in the
Figure 2. LTP Is Accompanied by a Net Enhancement of F-Actin Content in the Molecular Layer
(A) Brain was dissected 3 hr after HFS (2400) of the MPP fibers. MML was collected from the hippocampal section (30 μm thickness) with the Laser Capture Microdissection System LM2000. After the laser treatment, the section was stained with phalloidin-TRITC. The area corresponding to the MML (black zone) is indicated by white arrowheads. The yellow arrows show the GCL (dark zone).
(B) MML tissues from hippocampal sections dissected 3 hr after HFS (2400) of the MPP fibers were collected and fractionated. The total (T), soluble (S), and insoluble (I) materials were then separated by SDS-PAGE and silver-stained (top panel) or Western blotted with an anti-actin antibody (bottom panel). Silver-staining image demonstrates that all the proteins were prepared without any degradation. Arrowheads indicate a signal of actin molecule.
(C) The immunopositive signals on the Western blot were quantified by LAS-1000. T_{LTP}, total actin in the LTP side; T_{control}, total actin in the control side; R_{LTP} and R_{control}, ratio of insoluble actin to soluble actin in the LTP and control sides, respectively.
used urethane-anesthetized rats implanted with a recording electrode (stainless steel pipe electrode) linked to a syringe that can deliver various pharmacological agents to the dentate gyrus (see Experimental Procedures for details). We tested ADIs, a protein synthesis inhibitor, or vehicle alone (Figure 5). When we tested latrunculin A (50 μM), which sequesters G-actin and consequently causes F-actin depolymerization (Spector et al., 1989), or the protein synthesis inhibitor cycloheximide (10 mg/ml) on unstimulated rats, the basal synaptic transmission over 12 hr did not vary compared to the case when the vehicle was applied (Figure 5A).

With regards to LTP elicited by HFS (2000), when the recording electrode delivered cycloheximide, the LTP decayed to basal levels within 8 hr (Figure 5B, 103.6% ± 5.13% at 8 hr), indicating that E-LTP, which does not require de novo protein synthesis, decays within 8 hr in this LTP model. Importantly, latrunculin A blocked the development of late-phase LTP, as the LTP induced by HFS (2000) delivered 1 hr after administering the latrunculin A decayed 8 hr later to 98.9% ± 5.69% of the fEPSP slope obtained in the 60 min preceding HFS (Figure 5B). However, latrunculin A did not affect the initial amplitude and early maintenance of LTP, as at 30–50 min the LTP was 123% ± 4.7% of the fEPSP slope obtained in the 60 min preceding HFS. The difference in the HFS (2000)-evoked response by the control and latrunculin A groups became statistically significant at 8 hr (p < 0.05), and the decay of the LTP in the presence of latrunculin A resembled that of cycloheximide-treated LTP.

To exclude the possibility that latrunculin A does not affect LTP induction because it is inefficiently infused into the neurons at the time of HFS, the tube delivering latrunculin A was cut to promote drug infusion into the dentate gyrus and HFS was delivered 4 or 7.5 hr later (rather than 1 hr later) (Figure 5C). At both of these time points, the LTP amplitudes of the control and latrunculin A groups in the previous experiment differed. Infusion of latrunculin A even 7.5 hr prior to HFS had no effect on the initial amplitude (control, 112.7% ± 2.36%; latrunculin A, 113.3% ± 3.07%, p = 0.88, Student’s t test). Thus, the inhibition of actin assembly inhibits L-LTP without affecting E-LTP. These observations strongly suggest that a net increase in F-actin in the dentritic spines is important in the late phase of dentate gyrus LTP.

Another ADI, cytochalasin B, which caps the barbed end of F-actin and decreases F-actin levels (Cooper, 1987), did not significantly impair either the early or late phase of LTP at a dose of 50 μM (Figure 5D). Cytochalasin B at a higher dose (250 μM) partially impaired the given HFS (2400) were counted. A total of 1199 and 975 synapses in the MMLs of the control and LTP sides, respectively, were examined. *, p < 0.05, Welch t test, number of slices = 3.

(D) The synaptic density in the MML of the LTP side [45 min after the beginning of HFS (2400)] did not differ significantly from that of the control side. The number of synapses examined was same as in (C).

(E) Histograms showing the distribution of the length of synaptic apposition in the MML of the control and LTP [45 min after the beginning of HFS (2400)] sides. PR, phalloidin reactivity. Numbers in parentheses indicate number of synapses examined.
Figure 4. Effect of Pharmacological Agents on Actin Polymerization and Duration of Actin Polymerization

Phalloidin reactivity was quantified as in Figure 1G. LTP, ipsilateral LTP side; control, contralateral side. *, p < 0.05, compared with control side, t test. n, number of animals used for quantification.

(A) Phalloidin reactivity of brain slices of rats intraperitoneally injected with MK801, an NMDA receptor inhibitor (2 mg/kg body weight), or cycloheximide, a protein synthesis inhibitor (50 mg/kg body weight), given HFS (500) 45 min later and dissected after 20 min. CHX, cycloheximide.

(B) Time-dependent changes in the phalloidin reactivity of the molecular layer of the dentate gyrus after HFS (500) (20 min, 24 hr, 1 week, and 5 weeks). Scale bar equals 100 μm.

(C) F-actin levels in the MML following weak HFS (90).

The late phase of LTP, although statistically not significant. This may be attributed to the fact that the F-actin within the dendritic spines of cultured hippocampal neurons is more resistant to the action of cytochalasin than to latrunculin A (Allison et al., 1998).

Importance of Actin-Degradation Factor (ADF)/Cofilin in L-LTP

The turnover of actin filaments can be regulated by a number of actin binding proteins, including the ADF/cofilin family of proteins. These molecules have F-actin severing and F-actin depolymerizing activities and consequently stimulate actin filament turnover (for reviews, see Carlier and Pantaloni, 1997; Chen et al., 2000; Pantaloni et al., 2001). There is ample evidence that ADF/cofilin plays a pivotal role in regulating actin dynamics in the nervous system, as it is highly expressed in the nervous system (Bamburg and Bray, 1987) and its activity regulates process extinction and neurite outgrowth in cortical neurons (Meberg and Bamburg, 2000). Furthermore, its phosphorylation is believed to regulate the actin filament turnover that is thought to lead to growth cone collapse (Aizawa et al., 2001).

The F-actin depolymerizing activity of ADF/cofilin is negatively regulated by phosphorylation at a single site (Ser-3) (Agnew et al., 1995; Moriyama et al., 1996), and excessive actin polymerization is observed in mammalian and fly cells with highly phosphorylated ADF/cofilin (Arber et al., 1998; Niwa et al., 2002; Toshima et al., 2001; Yang et al., 1998). We therefore asked whether the level of ADF/cofilin phosphorylation in the dentate gyrus changes after L-LTP is induced (Figure 6). Because anti-phospho (Ser-3)-ADF/cofilin antibody used in this study was not suitable for immunohistochemistry, we carried out immunoblot to examine the change in the phosphorylation level. MMLs with and without HFS (500) were collected using the Laser Microdissection System LMD (Figure 6A) and subjected to quantitative Western blot analysis with anti-phospho (Ser-3)-ADF/cofilin antibody. This revealed that HFS (500) of the MPP fibers significantly increased the phosphorylation of Ser-3 of ADF/cofilin (Figures 6B and 6C). This increase
LTP, it partially affected the late phase of LTP (Figure and control hippocampal sections do not appear to differ which point it steadily declined to reach a plateau of which are important in neuronal functions, are composed of the activated dendritic spines alters in the inhibiting peptide group was similar to that of the ated protein-2 (MAP-2) and neuron-specific expression in the urethane-anesthetized rats, strong HFS elicited L-LTP in the dentate gyrus that lasted at least rearrangement of functional synaptic proteins such as incorporation into the granule cells of the dentate gyrus identical to that of phalloidin and persisted partially for the reverse sequence of the S3-peptide followed by immunoreactivity that localized specifically to the MML at 2 hr after cutting the tube delivering latrunculin A. The relative change in the fEPSP slope 30 min after the HFS delivery is shown. Numbers in parentheses indicate the number of animals used. Abbreviations: Lat. A, latrunculin A; CHX, cycloheximide; Cyto. B, cytochalasin B; nd, not determined.

The polyethylene tube was cut 1 hr before HFS (2000). A faster LTP decay was observed both in the latrunculin A group [versus DMSO group, \(F(1,14) = 5.124, p < 0.05 \)] and the cycloheximide group [versus DMSO group, \(F(1,14) = 6.009, p < 0.05 \)]. An asterisk indicates a statistically significant difference between the DMSO and cycloheximide groups, while a dagger indicates a statistically significant difference between the DMSO and latrunculin A groups.

(C) Latrunculin A specifically inhibits the late phase of LTP without affecting LTP induction. HFS (2000) was delivered 1, 4, or 7.5 hr after cutting the tube delivering latrunculin A. The relative change in the fEPSP slope 30 min after the HFS delivery is shown.

(D) Effect of cytochalasin B on LTP persistence. HFS (2000) was delivered 1 hr after cutting the tube delivering cytochalasin B. Cytochalasin B had no significant effect on LTP induction and early maintenance of dentate gyrus LTP, it partially affected the late phase of LTP (Figure 6E, left, S3-11R). That is, the LTP amplitude observed at 30 min and persisted for at least 5 hr. This strongly suggests that the net increase in F-actin levels during L-LTP is caused and maintained, at least in part, by a decrease in the actin-depolymerizing activity of ADF/cofilin.

If the net enhancement of F-actin content in the dendritic spine during L-LTP is mediated by a downregulation of the ADF/cofilin activity, then we can expect that inhibiting ADF/cofilin phosphorylation would affect L-LTP. To assess this, we synthesized a hybrid peptide comprising of a unique sequence consisting of the phosphorylation site of ADF/cofilin (S3-peptide) that would act as a competitive inhibitor for ADF/cofilin phosphorylation (Aizawa et al., 2001), and a stretch of arginines (11R) that would ensure the efficient delivery of the peptide to the hippocampal neurons (Matsushita et al., 2001). A control peptide was also synthesized that has the reverse sequence of the S3-peptide followed by 11R. These synthetic peptides were indeed efficiently incorporated into the granule cells of the dentate gyrus when delivered through the recording electrode (Figure 6D). In the urethane-anesthetized rats, strong HFS (2000) in the presence of the control peptide (Rev-11R) elicited L-LTP in the dentate gyrus that lasted at least 12 hr (Figure 6E). Control peptides (150 ng/\(\mu \)l and 300 ng/\(\mu \)l) had no significant effect on LTP (saline versus Rev-11R, \(p > 0.05 \)). In contrast, while injection of the inhibiting peptide S3-11R (150 ng/\(\mu \)l) had no effect on the induction and early maintenance of dentate gyrus LTP, it partially affected the late phase of LTP (Figure 6E, left, S3-11R). That is, the LTP amplitude observed in the inhibiting peptide group was similar to that of the control peptide group until 6 hr after HFS (2000), at which point it steadily declined to reach a plateau of about 105% of the baseline. In the animals infused with a higher concentration of the S3-11R peptide (300 ng/\(\mu \)l), the LTP decayed even more rapidly compared to the control animals without affecting the initial LTP amplitude (Figure 6E, right).

Immunoreactivities to Actin-Associated Proteins Increase in the MML after LTP Induction

That LTP induction causes a net enhancement of F-actin content in the dendritic spine suggests that LTP induction is accompanied by a change in the molecular composition of the dendritic spine. We tested this by examining the MML after HFS (300) for immunoreactivities against drebrin and synaptopodin, two actin-associated proteins known to localize in the dendritic spine (Figure 7). While both proteins were equally distributed throughout the molecular layer of the control dentate gyrus, 45 min after delivering HFS (300) to the MMP, an intense immunoreactivity that localized specifically to the MML was observed (Figure 7A). This staining pattern is almost identical to that of phalloidin and persisted partially for 3 weeks (Figure 7B, \(n = 5 \)). Thus, the actin-based molecular composition of the activated dendritic spines alters after LTP is induced. This change may cause a dynamic rearrangement of functional synaptic proteins such as receptors and signaling molecules and could further trigger a morphological change in the dendritic spine, which are two events that appear to be important for the maintenance of L-LTP.

In contrast to the actin-associated proteins, the LTP and control hippocampal sections do not appear to differ in their immunoreactivities against microtubule-associated protein-2 (MAP-2) and neuron-specific \(\beta \)-tubulin (iso-type 6) (Figure 7A, at 45 min). Both MAP-2 and \(\beta \)-tubulin, which are important in neuronal functions, are components of the tubulin cytoskeleton. Taken together, these
accompanied by a change in the actin cytoskeleton and function is more sensitive to ADIs (Kim anesthetized rats). Consistent with observations suggest that LTP induction is specifically postsynaptic function. These effects indicate the number of animals used. The LTP experiments in (A)–(C) were carried out with unanesthetized rat brains that had been removed 30 min or 5 hr after HFS (500). Two representative examples for each time point are shown. C, control side; L, LTP side.

Quantification of immunoblots were carried out for signal intensity to yield the phosphorylation index of ADF/cofilin. The phosphorylation index (PI) was calculated as follows: PI = (pAC/ACcontrol)/ (pAC/ACcontrol), where pAC and AC are signal intensities of phospho-ADF/cofilin and ADF/cofilin, respectively. Data from the 30 min (n = 4) and 45 min (n = 4) brains were combined. *, p < 0.01; one sample t test against hypothetical mean = 1.0.

FITC-labeled S3-11R peptide (left) or FITC-labeled Rev-11R peptide (right) was injected into the dentate gyrus of urethane-anesthetized rats. Numbers in parentheses indicate the number of animals used.

Note that the LTP experiments in (A)–(C) were carried out with unanesthetized rats, while the LTP in (E) was performed with urethane-anesthetized rats.

Figure 6. Involvement of ADF/Coiflin in Hippocampal LTP
(A) Representative images of the phalloidin staining of hippocampal sections obtained after collecting the MML tissues using the Laser Microdissection System (LMD). Arrows indicate the areas collected. Left, control side; right, LTP side.
(B) ADF/cofilin and phospho-ADF/cofilin (p-cofilin) antibody staining in Western blots of MML from frozen sections of brains that had been removed 30 min or 5 hr after HFS (500). Two representative examples for each time point are shown. C, control side; L, LTP side.
(C) Quantification of immunoblots were carried out for signal intensity to yield the phosphorylation index of ADF/cofilin. The phosphorylation index (PI) was calculated as follows: PI = (pAC/ACcontrol)/ (pAC/ACcontrol), where pAC and AC are signal intensities of phospho-ADF/cofilin and ADF/cofilin, respectively. Data from the 30 min (n = 4) and 45 min (n = 4) brains were combined. *, p < 0.01; one sample t test against hypothetical mean = 1.0.

(D) FITC-labeled S3-11R peptide (left) or FITC-labeled Rev-11R peptide (right) was injected into the dentate gyrus of urethane-anesthetized rat through the recording electrode, and a hippocampal section was made 4 hr later to visualize the FITC fluorescence in the GCL. The position of the electrode is just left outside of each picture. GCL, granule cell layer; IML, inner molecular layer. Scale bar equals 100 μm.

(E) Effect of S3-11R and Rev-11R peptide on dentate gyrus LTP of urethane-anesthetized rats. HFS (2000) was delivered 1 hr after cutting the tube to administer the peptides. Numbers in parentheses indicate the number of animals used. Note that the LTP experiments in (A)–(C) were carried out with unanesthetized rats, while the LTP in (E) was performed with urethane-anesthetized rats.

Spine Actin Reorganization Is Critical for the Maintenance of LTP

In this study, we found that dentate gyrus LTP induction is associated with actin cytoskeletal reorganization characterized by a net increase in F-actin content in the dendritic spines. The increase is rapid, being observed as early as 20 min after stimulation, and is then sustained for at least 5 weeks. Since the synapse number has not changed 45 min after the L-LTP induction, the HFS-dependent increase in phalloidin reactivity observed at 45 min must reflect an increase in the amounts of F-actin in each spine. Intensely phalloidin-reactive spines have longer synaptic appositions than weakly phalloidin-reactive spines in both LTP and control sides. Furthermore, the ratio of intensely phalloidin-reactive spines versus weakly phalloidin-reactive spines is higher in the LTP side than in the control side. These observations suggest that a spine actin reorganization triggered by HFS results in morphological changes of the spine shape. This is consistent with a previous observation that HFS enlarges the PSD area of polyribosome-containing spines in the hippocampal CA1 region (Ostroff et al., 2002). Whether the increased phalloidin reactivity observed at later time points, for example at 24 hr, is due to the formation of new spines still has to be investigated.

When actin polymerization is inhibited by latrunculin A treatment, the initial amplitude and the early maintenance of LTP are not affected but the late phase of LTP is completely inhibited, indicating that the late phase is dependent on the restructuring of the actin cytoskeleton. The abundance of F-actin in the dendritic spines may, therefore, be a structural indicator for the ability of the synapses to maintain a change in synaptic efficacy. Supporting this is that in contrast to latrunculin A, cytochalasin B did not significantly affect the late phase of LTP. Cytochalasin B effectively disrupts the F-actin within the soma and the dendritic shaft but not the F-actin within the spine (Allison et al., 1998). Importantly, we found a strong correlation between LTP persistence and the duration of F-actin augmentation. This may indicate that the increase of F-actin content in the pre-existing spines and the subsequent enlargement of spine morphology are critical for the late phase of LTP. Alternatively, at later time points, such as at 24 hr, formation of new spines (Trachtenberg et al., 2002) occurs and this contributes to the enhancement of phalloidin reactivity as well as the late maintenance of LTP.

That latrunculin A and the protein synthesis inhibitor cycloheximide both have equivalent effects in that they block the late phase of LTP, yet the accumulation of F-actin is not dependent on protein synthesis, suggests that the actin cytoskeleton is important for the functioning of newly synthesized proteins that are necessary for the late phase of LTP. Experiments with hippocampal CA1 slices have shown that the application of ADIs inhibit the pre- and postsynaptic functions needed for glutamatergic transmission and plasticity. These effects are dependent on the ADI drug concentration, as the postsynaptic function is more sensitive to ADIs (Kim and Lisman, 1999; Krucker et al., 2000). Consistent with our observations, a low dose of ADIs specifically inhibits our observations suggest that LTP induction is specifically accompanied by a change in the actin cytoskeleton and its associated proteins in the activated synaptic layer.
The distributions of drebrin, synaptopodin, MAP-2, and neuron-specific class III β-tubulin were examined by immunohistochemistry 45 min (A) and 3 weeks (B) after HFS (300) of the MPP. Quantification of phalloidin reactivity was carried out as in Figure 1G. *, p < 0.05, compared with control side, t test. n, number of animals used for quantification. Scale bar equals 100 μm.

the maintenance phase of LTP of AMPAR component without affecting the induction (Krucker et al., 2000). It should be noted that our observations do not necessarily exclude the possibility that L-LTP has a more strict requirement for actin cytoskeletal reorganization than E-LTP.

Potential Mechanisms by which Reorganized Spine Actin Cytoskeleton Promotes the Late Phase of LTP

How can the reorganized spine actin cytoskeleton participate in the molecular mechanisms underlying the late phase of hippocampal LTP? The actin cytoskeleton plays multiple roles in a wide variety of cellular functions, including membrane trafficking, local protein trafficking, acting as a protein-anchoring scaffold, and establishing cell morphology (for reviews, see Halpain, 2000; Langford and Molyneaux, 1998; Matus, 2000; Schafer, 2002). The actin filaments in the dendritic spines may thus contribute to the late phase of LTP through several mechanisms.

First, they could facilitate a morphological change in the dendritic spine that supports L-LTP maintenance. It is known that prolonged changes in synaptic efficacy are accompanied by a structural remodeling of the dendritic spines, including the formation of multiple synaptic boutons and the sprouting of the postsynaptic architecture toward the presynaptic terminal (Buchs and Muller, 1996; Colicos et al., 2001; Geinisman et al., 1996; Toni et al., 1999; Trommald et al., 1996; Weeks et al., 1998). Since pharmacological and genetic perturbation of actin dynamics affects spine structures (Meng et al., 2002; Nakayama et al., 2000; Pak et al., 2001; Penzes et al., 2001; Tashiro et al., 2000), the actin cytoskeleton is the most likely target that regulates spine morphology. Spine morphology is tightly correlated with the distribution of AMPARs within the spines (Matsuzaki et al., 2001), indicating that actin-based morphogenetic regulation of the dendritic spines is critical to the synaptic efficacy. Thus, net enhancement of F-actin content may be coupled to a change in the spine morphology, thereby modulating the LTP persistence. Alternatively, the increase in F-actin reflects the stable postsynaptic actin sprouting that follows multiple tetanic stimuli (Colicos et al., 2001), which may contribute to L-LTP persistence through the formation of new synapses.
Second, the actin filaments in the dendritic spines may support membrane trafficking. A large number of recent studies have provided strong evidence that the insertion of AMPARs into the synaptic membrane and the internalization of the AMPARs from the synaptic membrane are both important in determining synaptic efficacies, as the insertion and internalization of AMPARs mediate LTP and long-term depression (LTD), respectively (Carroll et al., 2001; Hayashi et al., 2000; Lledo et al., 1998; Sheng et al., 2001; Shi et al., 1999, 2001). Both of these events are mediated by membrane trafficking since the receptors are inserted and removed from the synaptic membrane by the endocytosis and exocytosis, respectively, of AMPAR-containing vesicles. The actin cytoskeleton is involved in several distinct processes of both endocytosis and exocytosis (Cremona and De Camilli, 2001; Qualmann et al., 2000; Schafer, 2002). Supporting this is that when F-actin is disrupted by latrunculin A, AMPAR is internalized (Zhou et al., 2001). Furthermore, AMPAR internalization is blocked by jasplakinolide, an F-actin-stabilizing reagent (Zhou et al., 2001). Thus, the stabilization of the F-actin in the spines following LTP induction that we observed in this study may increase synaptic efficacy by blocking AMPAR endocytosis.

Third, the actin filaments in the dendritic spines may also support local protein trafficking. Gene expression and protein synthesis are necessary for L-LTP. Some of the proteins synthesized in the soma in response to a synaptic input, such as Vesl-1/1S/Homer-1a, synaptopodin, and arcadin (Brakeman et al., 1997; Kato et al., 1997; Yamagata et al., 1999; Yamazaki et al., 2001), must be transported to the postsynaptic membrane or PSD to exert their function in L-LTP. Indeed, we found an increase in synaptopodin immunoreactivity of the synaptic layer after LTP is induced. F-actin is the sole cytoskeleton present in the dendritic spines and thus it must constitute the track that delivers these proteins from the dendritic shaft to the postsynaptic site through the spine cytoplasm. The subsequent fusion of membrane proteins with the postsynaptic membrane occurs by exocytosis and therefore also depends on the actin cytoskeleton. Thus, the actin cytoskeleton plays an essential role in the delivery of the appropriate postsynaptic proteins.

Fourth, the actin filaments may also act as a scaffold on which proteins are anchored. The F-actin in dendritic spines anchors macromolecular complexes (Allison et al., 1998; Halpain, 2000; van Rossum and Hanisch, 1999; Ziff, 1997). Plasticity-dependent changes in actin dynamics could alter the arrangement and functional state of postsynaptic proteins, including neurotransmitter receptors, signaling molecules, and scaffold proteins, thereby modulating the synaptic plasticity. Indeed, a critical role for PSD F-actin is implicated in the anchoring of AMPARs at postsynaptic sites during LTD (Lisman and Zhabotinsky, 2001). Moreover, actin dynamics are suggested to be involved in LTD mechanism, where deanchoring of the AKAP-PKA complex from the PSD associated with F-actin remodeling triggers the endocytosis of AMPARs (Gomez et al., 2002).

Signaling Mechanism Regulating Spine Actin Dynamics
Little is known about the molecular mechanisms that regulate actin reorganization in the dendritic spine, but our results demonstrate that ADF/cofilin is involved in regulating the actin dynamics during LTP. ADF/cofilin has F-actin severing and F-actin depolymerizing activity and consequently stimulates actin filament turnover (Carlier and Pantaloni, 1997; Chen et al., 2000; Pantaloni et al., 2001). We found that a strong HFS that elicits L-LTP enhances the phosphorylation of ADF/cofilin at its Ser-3 residue in the molecular layer, indicating that the activity of ADF/cofilin is suppressed by LTP-inducing stimuli. Furthermore, when the ADF/cofilin phosphorylation, which deactivates the molecule, was inhibited, the late phase of LTP was partially impaired.

What could be the signaling pathway that regulates the ADF/cofilin activity within the dendritic spine? One candidate could be the Rho family of small GTPases, which is known to be a key regulator of actin cytoskeleton dynamics in a variety of cell types (for a review, see Bishop and Hall, 2000). Rac and Rho, two members of this family, are implicated in spine shape changes in that the signaling pathway involving Rac promotes the formation and maintenance of the spine structure while the Rho pathway promotes spine retraction and prevents spine formation (Nakayama et al., 2000; Tashiro et al., 2000). Both of these pathways, which lead to an altered actin cytoskeleton, involve ADF/cofilin phosphorylation downstream of Rac and Rho activity. Both the Rac and Rho GTPases activate LIM kinase (LIMK) through the serine/threonine kinases Pak1 and ROCK (Roc), respectively (Edwards et al., 1999; Maekawa et al., 1999), and LIMK then in turn downregulates ADF/cofilin activity by phosphorylating Ser-3 (Arber et al., 1998; Yang et al., 1998). Thus, it may be that the Rac and Rho pathways could regulate the spine morphological changes supporting L-LTP by phosphorylating the downstream effector ADF/cofilin, which blocks its actin depolymerizing activity. Supporting this is a recent study with LIMK-1 knockout mice which revealed that LIMK-1 plays a crucial role in spine morphogenesis (Meng et al., 2002). The accumulation of F-actin in the dendritic spine was much lower in LIMK-1 knockout mice than in wild-type mice, and an abnormal spine morphology characterized by thicker necks and smaller heads was observed. However, as the inhibition of ADF/cofilin phosphorylation does not suppress L-LTP completely, it is possible that other regulators of actin organization, such as WASP and Arp, which promote actin polymerization, may also be involved in regulating the organization of spine actin during LTD.

Experimental Procedures

Animals
All procedures involving the use of animals complied with the guidelines of the National Institute of Health and were approved by the Animal Care and Use Committee of Mitsubishi Kagaku Institute of Life Sciences. Male Wistar ST rats approximately 20 weeks of age were used for LTD experiments.

Reagents and Antibodies
All reagents used in this study were purchased from Nacalai Tesque (Kyoto, Japan) unless otherwise indicated. The phalloidin-eosin con-
jugate and latrunculin A were from Molecular Probes (Oregon), and bovine serum albumin (BSA), phallolidin-tetramethylrhodamine B isothiocyanate (TRITC) conjugate, and cycloheximide (CHX) were from Sigma Chemical (Missouri). Mouse anti-AP2 monoclonal anti-body and FITC-conjugated goat anti-mouse and anti-rabbit secondary antibodies were from Chemicon (California), while rhodamine-conju-gated goat anti-mouse IgM secondary antibody was purchased from ICN (California). The mouse monoclonal anti-cofilin antibody (MAB-22) (Abe et al., 1989) and the rabbit anti-neuron-specific class III β-tubulin (Mij-6) antibody (Takiguchi et al., 1998) were kindly donated by Dr. T. Obinata at the Chiba University and Dr. Y. Arii at the Mitsubishi Kagaku Institute of Life Sciences, respectively. The fluorescein (FITC)-labeled S3-11R peptide (HMASGAVSVDSGVKVFN MRRRRRRRRRRR-FITC) and the reverse S3-11R peptide (Rev-11R, HNVFKVQDSSAVQSMRRRRRRRRRRR-FITC) were syn-thesized by Multiple Peptide Systems (California).

Dentate Gyrus LTP in Unanesthetized Freely Moving Animals

We used the surgical procedure described previously (Kato et al., 1997, 1998) with a slight modification. Briefly, a bipolar stimulating electrode and a monopolar recording electrode made of tungsten wire were positioned stereotaxically so as to selectively stimulate MPP and LPP projections while recording in the dentate gyrus. The stimulating electrode the MPP fibers was positioned 8.7 mm posterior, 5.3 mm lateral, and 5.3 mm inferior to the bregma. The stimulating electrode the LPP fibers was positioned 7.4 mm poste-rior, 5.9 mm lateral, and 7.0 mm inferior to the bregma. A recording electrode was implanted ipsilaterally 4.0 mm posterior, 2.5 mm lat-eral, and 3.8 mm inferior to the bregma. Rats were allowed to recover for at least 2 weeks in individual home cages.

LTP experiments on freely moving and unanesthetized animals were performed as described previously (Matsuo et al., 2000) with the following modications. We used three strong tetanic stimuli (biphasic square wave form, 200 μs pulse width), namely HFS (2400), HFS (300), and HFS (300), all of which elicit long-lasting L-LTP (numbers in parentheses indicate total stimulation pulses) (Figure 1B). HFS (2400) consisted of four trains with 15 min intertrain intervals. Each train consisted of 20 bursts of 30 pulses at 400 Hz, delivered at 5 s interburst intervals. HFS (500) and HFS (300) consisted of ten and six trains with 1 min intertrain intervals, respectively. Each train consisted of five bursts of ten pulses at 400 Hz, delivered at 1 s interburst intervals. The weak tetanic stimulation HFS (90) consisted of six trains at 10 s intertrain intervals. Each train consisted of 15 bursts at 200 Hz (biphasic square wave form, 200 μs pulse width). In some experiments, animals were injected intraperitoneally 45 min prior to the beginning of HFS (500) with the NMDA receptor inhibitor dizzepine maleate (MK801; 2 mg/kg body weight) or the protein synthesis inhibitor cycloheximide (50 mg/kg body weight).

Dentate Gyrus LTP in Urethane-Anesthetized Animals and Drug Delivery

LTP experiments with urethane-anesthetized rats were carried out as described previously (Inokuchi et al., 1996; Matsuo et al., 1998) with the following modifications. A bipolar tungsten electrode was used for stimulation and a stainless steel pipe electrode (i.d., 80 μm; o.d., 200 μm) for recording and drug delivery. The recording probe was connected to a microcylinder via a polyethylene tube. Before implantation, the recording electrode was filled with either latrunculin A, cytochalasin B, cycloheximide, synthetic peptide, or F-actin antibody and FITC-conjugated goat anti-rabbit secondary antibody. Test stimuli were delivered at 40 s intervals to monitor fEPSP. The body temperature of the animals was kept at 37°C throughout the LTP experiments by the Animal Blanket System MK-900 (Murumachi Kikai Co., Tokyo, Japan).

Histochromy

Rats were sacrificed under anesthesia and the brain was immedi-ately removed, frozen in dry ice, and then cut coronally with a cryo-stat microtome at 10 μm thickness. Sections were fixed for 30 min in 50 mM phosphate-buffered saline (PBS) containing 4% paraform-aldehyde, treated with PBS containing 0.1% Triton X-100, and then incubated overnight at 4°C with phal-lolidin-TRITC (0.1 ng/ml), FITC-DNase I (0 μg/ml), or primary antobody against actin (10 μg/ml), dynactin (Progen, Heidelberg, Germany), drebrin (1 μg/ml; MBL, Nagoya, Japan), MAP2 (1/100), or β-tubulin (1/500). After incubation, sections were subjected to secondary antibody (FITC- or rhodamine-conjugated goat antirabbit or mouse antibody, Chemicon, 1/200 dilution). Fluorescent images were acquired either with a cooled 3CCD camera (Hamamatsu Photonics, Shizuoka, Japan) with MacScope software (Mitani Co., Tokyo, Japan) or by laser-scanning confocal micro-scope LSM 5 PASCAL (Carl Zeiss, Jena, Germany). Fluorescence intensity was measured using the MacScope software and all the image preparations were performed by Photoshop software (Adobe, California).

Electron Microscopy by the Fluorescence Observation of Phalloidin Reactivity by Electron Microscopy

Phalloidin reactivity by electron microscopy was performed using a procedure based on a previously described method (Capani et al., 2001). Briefly, rats were deeply anesthetized with pentobarbital and fixed by cardiac perfusion with 150 ml of PLP fixative (0.1 M NaOAc, 0.75 M lysine, 2% paraformaldehyde). The brain was removed, immersed in PBS containing 20% sucrose, and then frozen in dry ice. Cryo-sections (20 μm) were immersed in PBS containing 0.1% Triton X-100, treated with PBS containing 0.05% glycine and 0.5% cold-water fish gelatin (PBSSG), and then each section was incubated overnight at 4°C with 10 U eosin-phalloi-din (Molecular Probes, Inc., Oregon) in 100 μl of PBSSG. Sections were then exposed to light (515 nm) from a mercury lamp for 30 min in 0.1 M sodium cacodylate buffer containing 2.8 mM DAB under continuous O2 bubbling, and then post-fixed with 1% osmium. After dehydration and embedding in resin, ultrathin sections were cut on a Poter-Blum MT2-B ultramicrotome and examined with a Hitachi H-600A electron microscope.

Actin Analysis

Three rats were sacrificed 3 hr after the delivery of HFS (2400), Ten cryo-sections (coronal cut at 30 μm thickness) from each animal were fixed with 70% ethanol for 90 s, dehydrated with ethanol, immersed in xylene, and then air-dried. The MMLs were dissected and collected using the Laser Capture Microdissection System (LM2000, Arcturus Eng., Inc., California). Anti-paxillin (BD Biosciences, CA), anti-α-catenin, and anti-β-catenin were used as described previously (Steward et al., 1998). This usually occurred 3–4 hr after the electrode implantation. The baseline synaptic transmission was further moni-tored for 1, 4, or 7.5 hr, after which the HFS was delivered. LTP was induced by HFS (2000), which consisted of five trains at 2 min intertrain intervals. Each train consisted of 400 pulses at 400 Hz. Test stimuli were delivered at 40 s intervals to monitor fEPSP. The body temperature of the animals was kept at 37°C throughout the LTP experiments by the Animal Blanket System MK-900 (Murumachi Kikai Co., Tokyo, Japan).

Analysis of Phospho-ADF/Cofilin

Rats were sacrificed 30–45 min or 5 hr after the delivery of HFS (500). Ten cryo-sections from each animal (coronal cut at 20 μm thickness)
thickness) were air-dried, and the MMLs of each side of the dentate gyrus were dissected and collected separately using the Laser Microdissection System (LMD; Leica Microsystems, Wetzlar GmbH, Germany). The collected tissue was treated with 100 mM Tris-HCl (pH 8.8), 33 mM NaCl, 1 mM EDTA, 40 mM DTT, 0.01% BPB, 10% glycerol to extract proteins. One-fifth of each extract (20 μl) was subjected to SDS-PAGE (12% polyacrylamide) and transferred to a PVDF membrane (Millipore, Massachusetts) followed by immunodetection with anti-phospho (Ser3)-ADF/cofilin antibody (Toshima et al., 2001). After the complete stripping of primary and secondary antibodies by treating the membrane with antibody-stripping solution (100 mM 2-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl (pH 6.7)) for 30 min at 50°C, the same membrane was rebotted with anti-cofilin antibody (MAB-22) to detect cofilin. The immunopositive signals were visualized and quantified by the LAS-1000 Plus Luminescent Image Analyzer.

Data Analysis

Data were expressed as means ± standard error and statistically analyzed with InStat 3 software (GraphPad software, California) and Statview software (Abacus Concept Inc., California).

Acknowledgments

We thank Drs. T. Obinata (Chiba University) and Y. Arimatsu (MITALS) for the monoclonal mouse anti-cofilin antibody and the rabbit anti-neuronal-specific β-tubulin antibody, respectively, and K. Ohashi, M. Takahashi, H. Ohnishi, and S. Ono for their helpful discussions. We also thank A. Murayama for technical assistance. This work was performed through Special Coordinate Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government. This work was supported in part by Grant-in-Aid for Scientific Research (no. 14780610) to Y.F. and by grants for Scientific Research on Priority Areas (A)-Neural Circuit Project and (C)-Advanced Brain Science Project to K.I. from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government.

Received: September 10, 2002
Revised: March 11, 2003
Accepted: March 20, 2003
Published: May 7, 2003

References

Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., and

